Effect of Finite Spatial Resolution on the Turbulent Energy Spectrum Measured in the Coastal Ocean Bottom Boundary Layer
نویسندگان
چکیده
The effect of finite spatial resolution on the measured energy spectrum is examined via a parametric study using in situ particle image velocimetry (PIV) measurements performed in the bottom boundary layer on the Atlantic continental shelf. Two-dimensional (2D) box spatial filters of various scales are applied to the data, and these filtered distributions are used to compute 1D energy spectra in both frequency and wavenumber domains. It is found that energy levels are attenuated by more than 15% at all length scales that are smaller than 10 times the scale of the filter. Filtering both in the direction of the spectrum as well as perpendicular to it contributes to the extent of attenuation, the latter via implicit integration over all wavenumbers. At scales larger than that of the filter, Gaussian, nonlinear Butterworth, and median filters attenuate less energy than the box filter. When frequency spectra are converted using Taylor’s hypothesis, wave energy appears in wavenumber space at a location different than its true physical scale, which is much larger than the filter sizes. Consequently, wave energy is not attenuated and dominates over the turbulence through this spectral range. Because wave energy and turbulence respond differently to the filtering, modified spectral slopes at the transition between waveand turbulence-dominated regions occur, resulting in inordinately steep spectral slopes. Finally, removal of the pressure-coherent part of the velocity signal is not sufficient to reveal the turbulence within the wave peak spectral range. Remaining energy in this range is still dominated by much larger scales.
منابع مشابه
Numerical Modeling of Turbulent Processes in outflow of the Persian Gulf
In this study, measured hydrophysical data collected by the University of Miami researchers from the southern part of the Strait of Hormuz during the period December 1996 to March 1998 and climate data from the Qeshm island meteorological station were used to simulate water column turbulence south of the Qeshm Island, via General Ocean Turbulence Model (GOTM). The model does not use slip and fl...
متن کاملLarge-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer
Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...
متن کاملTurbulent Mixing in Oceanic Surface and Benthic Boundary Layers
The objectives of the specific effort being reported are to improve the fundamental knowledge of turbulent mixing and diffusion processes occurring in oceanic boundary layers, with special emphases on the surface mixed layer and the wave-current boundary layer in coastal oceans. In the studies of surface mixed layers, the focus is on the penetration of a mixed layer (say, driven by the wind) in...
متن کاملThe Scaling and Structure of the Estuarine Bottom Boundary Layer
A two-week dataset from a partially and periodically stratified estuary quantifies variability in the turbulence across the tidal and spring–neap time scales. These observations have been fit with a twoparameter model of the Reynolds stress profile, which produces estimates of the time variation of the bottom boundary layer height and the friction velocity. Conditions at the top of the bottom b...
متن کاملSimulation of particle diffusion and heat transfer in a two-phase turbulent boundary layer using the Eulerian-Eulerian approach
This work investigates the response of two-dimensional, turbulent boundary layer characteristics over a flat plate to the presence of suspended particulate matter. Both phases are assumed to be interacting continua. That is, the carrier fluid equations are considered to be coupled with the particle-phase equations. A finite-difference technique with non-uniform grid has been employed for the so...
متن کامل